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Abstract

This paper describes the conceptual model, specification method, and visualization methodology
for Pavane—a visualization environment concerned with exploring, monitoring, and presenting concurrent
computations. The underlying visualization model is declarative in the sense that visualization is treated as
a mapping from program states to a three-dimensional world of geometric objects. The latter is rendered in
full color and may be examined freely by a viewer who is allowed to navigate through the geometric world.
The state-to-geometry mapping is defined as a composition of several simpler mappings. The choice is
determined by methodological and architectural considerations. This paper shows how this decomposition
was molded by two methodological objectives: (1) the desire to visually capture abstract formal properties
of programs (e.g., safety and progress) rather than operational details and (2) the need to support complex
animations of atomic computational events. All mappings are specified using a rule-based notation; rules
may be added, deleted, and modified at any time during the visualization. An algorithm for termination
detection in diffusing computations is used to illustrate the specification method and to demonstrate its
conceptual elegance and flexibility. A concurrent version of a popular artificial intelligence program
provides a vehicle for demonstrating how we derive graphical representations and animation scenarios from
key formal properties of the program, i.e., from those safety and progress assertions about the program
which turn out to be important in verifying its correctness.
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1. Introduction

During the past decade visualization has become an indispensable scientific tool [6]. In medicine,
physics, meteorology, engineering, and elsewhere researchers use images to cope with large and dynamic
data volumes gathered through observations or generated by simulations. A single image is able to convey
vast amounts of information directly tied to the physical phenomenon under consideration. Seeing a
simulated tornado move across the screen, a specialist is more likely to discover a simulation error than by
hovering for long hours over columns of numbers. Similarly, images can assist non-specialists to develop
a certain degree of understanding of scientific undertakings. The power of abstraction inherent in visual
representation and the innate human ability to rapidly process very large volumes of visual information are
the keys to the success of scientific visualization. [6]

The same arguments can be made on the behalf of program visualization which, within the scope
of this paper, is defined as the graphical presentation, monitoring, and exploration of concurrent
computations. These activities, intrinsic to the software engineering process, also involve large volumes of
information of a highly dynamic nature. Moreover, both the amount of information that must be examined
and the rate of change associated with this information increase with the degree of concurrency exhibited by
the system under consideration. With the advent of highly parallel multicomputers and growing interest in
concurrent programming, program visualization is expected to make significant inroads in the near future.

It is our contention, however, that visualization of concurrency is faced with intellectual challenges
that are much greater than those encountered in scientific visualization. In the scientific domain, one
visualizes data which is associated directly with some physical phenomenon which, in turn, dictates a
particular visual representation. In concurrency, the phenomenon to be explored by visual methods is the
computation itself. Most often, there is no output data and the operational or structural details are too low-
level and localized to be useful in reasoning about the computation. Since understanding a sequential
algorithm requires something more than the ability to read each line of code it executes, it should come as
no surprise that understanding a concurrent computation requires something more than just seeing what each
component does. Moreover, since the screen real estate and the human focus of attention are limited the
choice of visual abstraction is very important.

Our current research on program visualization is centered around the development of a system
called Pavane. Its goal is to facilitate exploration and validation of methodologies for visualizing
concurrent computations. Several design requirements played an important role in shaping the conceptional
model on which Pavane is based.

(1) A broad class of concurrent computations had to be specifiable in a language that has an
associated assertional-style proof logic. Pavane uses the language Swarm [9], a computational
model which extends UNITY [2] and its proof logic to include content-based accessing to data,
dynamic statements, and dynamic partial synchrony. Swarm is particularly attractive due to its
simple and uniform representation of both data and control states: a single set of tuples called the
dataspace.

(2) Visualizations had to be easily specified and altered. This is accomplished by adopting the
declarative visualization method proposed in [8]. Visualization is treated as a mapping from
program states to a three-dimensional world of geometric objects. The latter is rendered in full-
color and may be examined freely by a viewer who is allowed to navigate through the geometric
world as it changes in response state transitions in the underlying computation. The state-to-
geometry mapping may be defined as a composition of several simpler mappings. All
mappings are specified using a rule-based notation; rules may be added, deleted, and modified at
any time during the visualization.

(3) Real parallelism as exhibited by programs executing on multiprocessors and networks must
eventually replace the simulated parallelism of the current Swarm implementation. The
particular visualization mapping adopted by Pavane allows a computation which is not
formulated using Swarm to supply (incrementally via Ethernet) abstract tuple-like
representations of its state changes without losing the elegance and flexibility of declarative



visualization. Moreover, the mapping is decomposed in such a way so as to facilitate a future
high-performance pipelined implementation of the visualization process.

(4) Full animation capabilities had to be provided without sacrificing the advantages of declarative
visualization. At the time we first proposed treating visualizations as mappings from program
states to geometric objects, it was not at all obvious how one might accommodate the
animation of simple events (e.g., highlighting of objects involved in some state transition,
smooth movements from one state representation to the next). Pavane preserves the notion of
state to object mapping but permits the detection of visual events (changes in the configuration
of the world of geometric objects) which may be mapped into animation sequences by
employing the same rule-based notation.

The requirement for an assertional-style proof logic is motivated by our desire to place the process
of constructing the visualization of a given concurrent program on some solid technical foundation. The
particular approach we are currently exploring could be characterized in general terms as a proof-based
visualization—the visualization focuses on abstract formal properties of the computation and not on
structural or operational properties of the program. We justify our selection of this approach by observing
that in the concurrent domain operational thinking is often rendered ineffective by the very large number of
possible interleavings of events. By contrast, assertional reasoning [2] has emerged as an effective tool for
acquiring valuable insight about the workings of such programs—today, a concurrent program without a
proof is hardly given any serious consideration. Since program understanding is also the primary objective
of visualization, the connection between proofs and visualization seems to be a natural one, at least in
principle. We showed previously [8] that there is also a way to exploit this relation at a practical level.
Safety and liveness properties, typically used in reasoning about concurrent computations, have appropriate
visual counterparts. A safety property can be rendered as a stable visual pattern, while liveness may be
captured by an evolving one. Moreover, we have some preliminary evidence that the form of the logical
predicate capturing the program property (e.g., existential versus universal quantification) also can provide
valuable hints on the type of visual representation one ought to consider.

The remainder of this paper examines Pavane, its design, and the visualization methodology it
supports with the help of two sample programs: one for detecting termination in diffusing computations
and another for bagging groceries in accordance with a prescribed set of rules. Section 2 introduces the
diffusing computations program, some Swarm notation required to capture the program state, and several
important formal properties of the algorithm. Section 3 describes the process of specifying a complete
visualization for the diffusing computations program as the composition of a series of simple mappings
whose domains and ranges are sets of tuples. Special attention is given to highlighting the methodological
considerations that led to the particular mappings adopted by Pavane. Section 4 introduces the bagger
program and explores the heuristics we developed for deriving graphical representations and animation
scenarios from key formal properties of the program, i.e., from those safety and progress assertions which
turn out to be important in verifying its correctness. Section 5 discusses the design of Pavane and its
current capabilities. A summary and conclusions appear in Section 6.

2. Specifying Concurrent Computations

In this section we introduce the diffusing computation problem and explain how it is expressed in
Swarm. Since the focus of this paper is the specification of visualizations, not computations, we explain
Swarm and its notation only to the extent necessary to support the remainder of the presentation. The
reference list, however, cites articles that discuss Swarm [9] and its proof logic [3].

Underlying the Swarm language is a state-transition model similar to that of UNITY [2]. In
Swarm, the state of a computation is represented by the contents of the dataspace, a set of content-
addressable entities. The model partitions the dataspace into three subsets: the fuple space, a finite set of
data tuples representing passive data; the transaction space, a finite set of transactions representing program
actions; and the synchrony relation, a mechanism for specifying that selected actions are to be executed
either synchronously or asynchronously (a feature unique to Swarm). Every element of the dataspace has a
tuple-like representation, i.e., it is a pairing of a type name with a sequence of values. In addition, a
transaction has an associated behavior specification. The execution of a single transaction is modeled as a
transition between dataspaces. The executing transaction examines the dataspace, then deletes itself from



the transaction space and, depending upon the results of the dataspace examination, modifies the dataspace
by inserting and deleting tuples and synchrony relation entries and by inserting (but not deleting) other
transactions. A Swarm program begins executing from a valid initial dataspace and continues until the
transaction space is empty. On each execution step a transaction is chosen nondeterministically from the
transaction space along with all other transactions belonging to the same synchronic group. (A synchronic
group consists of all transactions present in the dataspace and related to each other via the reflexive
transitive closure of the synchrony relation.) The entire synchronic group is executed. The transaction
selection is fair in the sense that each transaction in the transaction space will eventually be chosen. The
notation for tuples and simple transactions are the only portions of the Swarm model required to handle the
diffusing computation problem.

Problem. In the Diffusing Computations Problem one is given a collection of N interconnected
processes which communicate by sending messages over channels and an external environment which can
send messages to some of the processes. Each process is either active or inactive; only active processes can
send messages. An active process may become inactive at any time; an inactive process becomes active
only on receipt of a message. Computation begins when the environment sends messages to one or more
processes and ends when all processes are inactive and the environment is not sending any more messages.
The environment must detect the termination of the computation, i.e., when all processes are inactive and
no further messages can be received by any process.

Solution outline. The solution we present here is based on that proposed by Dijkstra and
Scholten [4]. Each process acknowledges every message it receives. A process that is inactive records the
identity of the process (henceforth called parent process) whose message caused a transition from the
inactive to the active state, but delays the acknowledgment of that message until its state changes back to
inactive. An active process immediately acknowledges all the messages it receives. Termination is detected
by the environment when it has received acknowledgments for every message sent. The correctness of this
solution relies on the following two invariants:

(1) Considering active processes as vertices and parent process information as directed arcs from
child to parent, the set of all active processes forms a tree whose root is the environment.

(2) For each process, either the process is active or the number of pending acknowledgments is zero.

Furthermore, under the assumption that the underlying computation terminates, the following progress
condition holds:

(1) A configuration in which only the environment is active eventually leads to a configuration in
which neither the environment nor the processes are active.

It is this particular solution and the properties above that we will be using to illustrate the mechanics of
specifying visualizations.

Data representation. In our approach visualizations are specified as mappings from the state
space of the computation to images on the screen. The computation state in the solution above is defined
by the local state of the environment, of each process, and of each communication channel. If we ignore
the message contents and the computation carried out by the individual processes, the computation state can
be captured in the following manner. The environment state consists of a single data tuple, of type
environ, which stores the number of messages the environment will be initiating in the future and the
number of unacknowledged past messages. The process state consists of a single tuple, of type process,
which stores the process identity, its status (active or inactive), the number of messages sent but not yet
acknowledged, and the identity of the parent process; by convention, we make the parent process of an
inactive transaction the environment (this has no effect on the computation). The process identifiers range
over 1 through N. The special identifier O is used to refer to the environment. The channels are
bidirectional; messages flow in one direction and acknowledgments in the opposite one. The state of each
channel consists of two tuples, one of type msg and the other of type ack. Each tuple stores the source and
destination for the message (acknowledgment) and the number of messages (acknowledgments) in transit.

In Swarm, the four tuple types introduced so far are declared as follows:



environ( messages_to_send, pending_acks );
process ( id, status, pending_acks, parent, );
msg( source , destination , in_transit );
ack( source, destination, in_transit )

All the tuple components are natural numbers except the process id, which is a natural in the range O to N,
and the status, which is a member of the enumeration {active, inactive}.

Computation/communication. In Swarm, both computation and communication are reduced
to atomic transformations of the dataspace called transaction executions. Transactions appear in the
dataspace and have a tuple-like representation consisting of a transaction type name and a sequence of fully
instantiated parameters. A transaction execution involves a query evaluation over the dataspace which
results in the binding of some local variables and is followed, if successful, by deletions and insertions into
the dataspace, in this order. Since multiple sets of dataspace entities may satisfy the same query,
nondeterminism is manifest in the query evaluation. Nevertheless, once the variables are bound, the
dataspace changes are fully specified and deterministic.

The environment behavior, for instance, can be captured by a single transaction of type Env()
defined as follows:

Env() =
i, k, ¢, q : environ( k, ¢ )T, k >0, msg(0, 1, q )t
— environ( k-1, c+1 ), msg( 0, i, q+1 )
Il ¢, i,q:environ( 0, c)f,c>0,ack(i,0,q)f,q>0
— environ( 0, c-1), ack(1i,0,qg-1)
[l =environ( 0,0)
—  Env()

Env is a transaction class consisting of a single transaction instance Env() which, in turn, consists of three
synchronously executed subtransactions separated by the Il. The synchronous execution forces the three
subtransactions to synchronize after the evaluation of the query, after the performance of all dataspace
deletions (marked by daggers), and finally after the completion of all dataspace insertions.

Each subtransaction consists of a query followed by an action shown after the arrow. The query
part of the first subtransaction above, for instance, checks if there are still messages that the environment
must send out by looking for a tuple environ(Ck,[XJ) with k greater than zero and selects some process with
which the environment can communicate directly by looking for any tuple of the form msg(CD,3,0), i.e.,
a channel from O (the environment's identifier) to i with ¢ messages in transit. Having bound the variables
i, k, c, and g, the action part is performed in two phases. The deletion of the tuples environ(Ck, ) and
msg(CD,0,0) takes place first, followed by the insertion of two new tuples containing the updated
environment and channel states. Insertions are specified by listing a data tuple or transaction after the
arrow. Deletions are specified either by listing a data tuple marked by a dagger in the action part or, for
reasons of convenience, by placing a dagger on a tuple in the query part.

Using similar mechanics, the second subtransaction checks if all environment messages have been
dispatched and, if this is the case, seeks out arriving acknowledgments. If any acknowledgment is found, it
is removed from the respective channel and from the environment state by decrementing the counters in
environ(D,XO) and ack(dd,D,;0). Finally, the last subtransaction recreates the transaction Env() as long
as there are messages that need to be delivered and acknowledgments that have not arrived. This is necessary
because a transaction is automatically deleted as part of its execution.

Process representation. In Swarm there is no concept of process and there are no sequential
programming constructs. Transaction types and transaction instances are available instead. Since Swarm
lacks any sequential constructs, sequencing is accomplished by defining continuations in the form of new
transactions to be inserted into the dataspace. Similarly, non-deterministic selection among multiple
behavior choices is modeled by placing in the dataspace a transaction for each alternative. For this reason,
each process [ participating in the diffusing computation is represented by three transaction instances:
SendMsg(I), which processes the dispatching of messages whenever the process is active; GetMsg(I), which



processes the arrival of messages and the transition from inactive to active status; and PassAck(I), which
processes the arrival of acknowledgments and the transition from active to inactive status. The definition of
the corresponding transaction classes (parameterized by [ in the range 1 to N) is given below:

SendMsg(1) =
i, g, ¢, p : process( I, active, c, p )T, msg( L, i, q )T
— process( I, active, c+1, p ), msg( L, i, q+1 )
I TRUE
—  SendMsg(1)

GetMsg(1) =
1, q, ¢ : process( I, inactive, 0, 0 )T, msg(i,I,q)f,q>0
— process( I, active, 0,1 ), msg(i,I,q-1)
Il 1i,q,c,p, k:process(1, active, c, p ), msg( i, I, q )T, q >0, ack( L, i, k )T
— msg(i, I, g-1), ack(L, i, k+1)
I TRUE
— GetMsg(1)

PassAck(1) =
i, ¢, p, k : process( I, active, c, p )T, ¢ >0, ack(i, I, k), k>0
— process( I, active, c—1, p ), ack( i, I, k-1)
Il 1, ¢, p, k:process(1, active, 0, p )T, ack( I, p, k )T
— process( I, inactive, 0, 0 ), ack( I, p, k+1 )
I TRUE
—  PassAck(1)

TRUE is one of a class of special query types which may be used; TRUE is a query which always
succeeds, so each of the above transactions re-creates itself when it is executed. Some of the other special
query types succeed or fail depending on the success or failure of the other subtransactions of the synchronic
group; for example, the special query NOR succeeds if and only if none of the other subtransactions
succeed.

Initialization. The initial configuration of the dataspace is defined by

[I,J:1=I=<N,0=<J=N,JcansendtolI ::
environ( K, 0 );
process( I, inactive, 0, 0 ); msg(J, I, 0 ); ack( L, J, 0 );
Env();
SendMsg( I); GetMsg(1); PassAck(1)
]

where K is some natural number representing the number of messages the environment will send. All
transaction instances are persistent (i.e., re-create themselves and hence remain in the dataspace) except
Env(). The data tuples change to reflect changes in the state of the environment and of the processes.

Termination detection. Termination is defined as a state where all processes are inactive, no
messages or signals are in transit, and the environment has no more messages to send. From the above
transaction specifications, it is possible to show that

-Env() = termination
i.e., that the absence of the Env() transaction in the dataspace indicates that the computation has terminated.

In this particular case, the Swarm simulation of the computation continues (but does not change the
dataspace) since the SendMsg, GetMsg, and PassAck transactions are still present in the dataspace.



3. Specifying Visualizations

In systems like BALSA [1] and Cedar's Real-Time Visualization system [11], visualizations are
built by identifying in the program code places where significant events occur and by annotating the code
with calls to procedures that manage the visualization. In effect, these procedures provide a low level
constructive method for mapping computational events into complex sequences of visual events. By
contrast, visualizations in Pavane are specified abstractly, as mappings from computational states to images
on the screen. This declarative approach to visualization is attractive because visualizations are specified
and modified easily and because visualization is decoupled from the program code. Pavane is not the first
system to employ declarative visualization. PROVIDE [7] and PVS [5], for instance, make use of simple
mappings from variables to icon attributes. Difficulties associated with specifying formally and elegantly
the state of programs written in traditional block structured languages may explain why declarative methods
have failed to play (so far) a significant role in the visualization community.

Because Swarm combines expressive power with a simple uniform representation of the program
state (tuple-like entities stored in the dataspace), Pavane is the first system to exploit to the fullest extent
the power of declarative visualization. However, the potentially complex mappings appearing in Pavane
require the use of a compositional approach to defining mappings, i.e., a complex mapping is given as a
composition of several simpler ones. Besides helping manage complexity, compositional approaches
facilitate the formulation and refinement of visualization methodologies (as shown in the remainder of this
section) and are expected to play a key role in constructing high-performance systems for program
visualization. This could be accomplished by restructuring and restricting the mappings in a manner that is
best suited for a particular underlying architecture (e.g., pipelining, dataflow, etc.).

In order to retain the advantages of a single uniform representation, all the mappings used in
Pavane are defined over sets of tuples called spaces. The mappings used in Pavane fall in one of three
categories: simple, history sensitive, and differential mappings. A simple mapping is a function which
given an input space produces an output space. A history sensitive mapping computes the output space by
examining both its (primary) input space and the previous version of its output space. This enables one to
accumulate historical data, e.g., count the number of passes through the visualization mapping. Finally, a
differential mapping is one that computes the output space by examining the current and the previous
configuration of the input space. This allows one to check for changes, i.e., to detect events, if necessary.

Mappings are combined by identifying the output space of one as the primary input space for the
next. Since each mapping has a single primary input space and a single output space, the result is a linear
application of a series of mappings originating with the Swarm dataspace and ending in images on the
screen. Conceptually, each atomic transformation of the dataspace, i.e., computational event, triggers an
instantaneous recomputation of the entire mapping, leading to appropriate changes to the image. In order to
accomplish this, a visualization system which is not fast enough to keep up with the computation must
slow down the computation using some control flow protocol. This is possible on experimental platforms
such as Pavane but it is not reasonable on a production system. The latter needs to employ high
performance implementations (e.g., specialized hardware, pipelined algorithms) and must reduce the amount
of information presented on the screen by exploiting the abstraction capabilities of state-based declarative
visualization.

We specify each mapping as a collection of rules. For a simple mapping, each rule may be seen
as a logical relationship between the input and output spaces given in terms of a predicate Q(v) over the
input space and a predicate P(v) over the output space, with the restriction that P(v) is simply a test whether
or not a specific list of tuples is present in the output space:

Vv : Q)= P(v)

If a mapping is defined as a finite set of rules, the output space is, by definition, the smallest set satisfying
all the relationships required by the set of rules. Operationally, one may treat Q(v) as a query over the input
space and P(v) as a list of tuples contributed by the particular rule to the construction of the output space.
The result of applying a mapping (a collection of rules) is simply the union of all sets of tuples produced
by the rules of the mapping.
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Figure 1: Visualization mapping decomposition in Pavane.

For notational convenience, the notation employed by Pavane drops the universal quantification
allowing the visualization rules to be simply stated as

v: Q)= P(v)

Thus, the notation for the rules is similar to the Swarm subtransaction notation, except that = is used in
the rule instead of the Swarm — to separate the query part from the list tuples produced by the rule.
Despite the syntactic similarity, one must remember that subtransactions have an implicit existential
quantification while the visualization rules have an implicit universal quantification.

Under the simplifying assumption that no two spaces contain tuples of the same type, no
additional notation is required for history-sensitive mappings. The query (predicate) Q(v) is merely
permitted to make reference to tuples in the previous output space and the tuples produced are contributed to
the current output space. The distinction is made from the context, i.e., Q(v) or P(v). New notation is
required, however, in differential mappings where Q(v) must refer to both the current and previous input
space. We choose to prefix tuples from the previous input space configuration with the qualifier old.

Figure 1 depicts the visualization mapping decomposition employed in Pavane. The state space
refers to the computational state of the program being visualized, i.e., the Swarm dataspace in the current
implementation; the proof space is an abstraction of the program state obtained by eliminating irrelevant
details and by accumulating certain historical data; the object space defines a three dimensional world of
geometric objects; finally, the animation space contains graphical objects (objects which may be painted on
the screen) with time-dependent attributes. The proof mapping and object mapping are history-sensitive.
The animation mapping is differential; it detects visual events and translates them into sequences of image
changes interpreted by the frame generation mapping. The frame generation mapping is effectively a simple
mapping, but is not under the control of the composer of the visualization. In the remainder of this section
we justify and illustrate this particular decomposition using the program introduced in Section 2.

3.1. The proof mapping—extraction of key properties

As a methodological foundation for visualization, we have made the assumption that those
properties of the program which are important in verifying its correctness are also properties which should
be visualized. We have constructed a number of visualizations using this methodology, and have found it
to be quite successful as a method for constructing meaningful visualizations. Accordingly, in Pavane we
refer to the first stage of visualization as the proof mapping. 1Its function is to extract from the program
state only those aspects relevant to visualization. The output space of this mapping is called the proof
space.

State extraction is obviously of great importance in program visualization. Our choice of Swarm
as a computational model greatly simplifies the problem of extraction—all components of the state, both
data and control, are contained in the Swarm dataspace and easily accessible. When visualizing
computations which are not expressed in Swarm, some mechanism must be available for monitoring the
program state and for communicating it to Pavane. In this context, the proof mapping can be considered as



a specification of what information about the state must be extracted and how the information should be
presented to later stages of the visualization.

Originally the proof mapping was intended to be a simple mapping. However, several
considerations led us to choose a history-sensitive mapping. One consideration which led to this decision
was the postulated proof-based methodology for constructing visualizations. It is often the case that
program proofs rely on the use of auxiliary variables which maintain information about the computation.
Therefore, the proof rules need to access the old values of the auxiliary variables—in other words, the
previous proof space—in order to compute the new ones.

We use as a starting point for our visualization of diffusing computations one of the key invariants
required in the correctness proof: the parent information in those process tuples whose status is active
defines a directed tree rooted at the environment. Note that at this point, the term “tree” refers to a graph-
theoretic entity and not to a geometric representation. However, the correspondence between a graph-
theoretic tree and its depiction is a natural one and serves as the basis for our visualization.

Not all tuples and transactions appearing in the diffusing computations program are essential to
capturing this invariant. In the proof mapping, we isolate those aspects of the computation which are of
interest. In this case, we wish to collect the information needed to describe the connectivity of the tree
(edge definitions). In addition to extracting the parent-child relations from the state space, we also use the
proof space to compute the distance of each node from the tree's root; this information is implicitly
contained within the tree structure, but to generate a graphical representation of the tree we need to have
explicit values. This illustrates another use of the proof space, the calculation of values required to support
later stages of the visualization.

The connectivity and distances from the root are represented in the proof space by vertex tuples
containing for each node in the graph the node's id, the id of the node's parent, and the distance of the node
from the root (the environment). To generate the distance information, we make use of a known property
of the underlying computation: a process can become active in a single atomic action only if its parent was
already active. Therefore, a node can be added to the tree only if its parent was present in the tree in the
previous step; we can compute the node distance by querying the previous proof space to determine the
distance of its parent.

Two rules accomplish the proof mapping. The first puts a node representing the environment into
the tree:

Env()
= vertex(0,0,0)

Technically the environment’s parent is undefined; by convention we will use O for the parent. The second
rule creates tuples representing active processes. The query part of the rule examines the previous proof
space to determine the distance of the node's parent from the root:

id, ack, p, pp, dist :
process( id, active, ack, p ), vertex( p, pp, dist )
= vertex(id, p, dist+ 1)

For every instantiation of the variables id, ack, p, pp, and dist such that a tuple
process(dd,Chctive,Chck,CpC) can be found in the current state space and a tuple vertex(TCh,Cpp,[lisf) can
be found in the previous proof space, a tuple vertex(Cdd,Cp,[Hisd+ /) is contributed to the object space.

3.2. The object mapping—abstraction of properties

The next stage is the materialization of properties contained in the proof space into a three-
dimensional geometric representation. The object mapping accomplishes this task, producing a collection
of tuples called the object space. The inputs to the object mapping are the current proof space and the
previous instance of the object space. The tuples of the object space represent abstract geometric objects.
They define an abstract three-dimensional world of objects which lacks a concrete visual representation,



because the abstract objects are not necessarily in one-to-one correspondence with the graphical objects that
make up the final image. Each tuple in the object space may eventually be mapped to several graphical
objects of the final image, or a single graphical object may be described by parameters drawn from several
tuples of the object space. This flexibility is an important part of our model, as it allows the constructor of
the visualization to work with concepts that are most suitable for the task, without premature commitment
to a particular visual representation.

Returning to our example, we construct the tree in three dimensions. (We are now using “tree” to
refer to a geometric construction.) Assume that we have some layout of the underlying communications
graph in the plane—this is not to say that the graph is planar, merely that we have some arrangement of its
vertices in the plane. The X- and Y-coordinates of the nodes in our three-dimensional tree are obtained from
the corresponding coordinates in this graph, while the Z-coordinate corresponds to the distance of the node
from the root (environment). Pavane provides mechanisms for the definition and use of functions.
Assuming three functions which produce the needed coordinates:

nodex : Processlds — Reals
nodey : Processlds — Reals
nodez : Naturals — Reals

the tree is constructed using two types of components: the nodes and the links between nodes. The
following rules generate these two types of abstract objects, without yet indicating how they might be
represented (three-dimensional coordinates are represented by triples enclosed in brackets):

vertex( 0,0,0)
= node_object( [ nodex(0), nodey(0), nodez(0) ] )

id, pid, dist, ppid, pdist :
vertex( id, pid, dist ), vertex( pid, ppid, pdist )
= node_object( [ nodex(id), nodey(id), nodez(dist) ] ),
link_object( [ nodex(id), nodey(id), nodez(id) ], [ nodex(pid), nodey(pid), nodez(pdist) | )

All that we currently specify is that the nodes are abstract objects associated with a particular point and the
links are objects characterized by two points. The first rule generates the root node at the coordinate of the
environment. The second generates a node for each non-root node (i.e., those which have a parent node) and
a link between the node's coordinate and that of the node's parent.

3.3. The animation mapping—production of graphical objects

The third stage of the visualization mapping involves the translation of abstract objects produced
by the object mapping into a form suitable for rendering. We call the objects which can be so rendered
primitive graphical objects. The current Pavane “vocabulary” of primitive graphical objects includes
points, lines, polygons, circles, and spheres; this vocabulary can be extended by augmenting the capabilities
of the rendering engine. Production of the primitive graphical objects is accomplished by the animation
mapping which uses the object space to produce an animation space. In the latter, each tuple represents
exactly one primitive graphical object. Actually, the animation mapping is a differential mapping. A
simple mapping cannot accommodate smooth transitions between the images representing successive states;
the final result would have a jerky appearance and would be difficult to follow, as objects simply appeared
and vanished in response to changes in the object space.

Full animation capability is not possible unless one is able to recognize events. This does not
mean, however, that one needs to detect computational events. Our model does not preclude the use of
animation techniques, but moves the concern with special effects into the visual realm: we treat these
special effects as decompositions of visual events. For example, an exchange of the positions of two
objects on the screen might be the direct result of a change in the state of the underlying computation. The
animator can detect this visual event (the exchange of objects) and decompose it in a sequence of simpler
visual events involving synchronized movement along some prescribed trajectories. In this manner we are
able to preserve the formality of state-based mapping without sacrificing aesthetics.



10.

To accomplish this, the tuples of the animation space represent primitive graphical objects
positioned in a 4-D space, the three spatial dimensions plus time. The tuple type corresponds to the object
type (line, sphere, etc.). The tuple components correspond to the various attributes of the object; for
example, a line object has the attributes lifetime, from, to, and color. Attributes may be time-dependent,
with time being measured in terms of number of display frames starting at 0. A collection of functions are
provided to generate time-dependent values. For example, the function ramp(ty, vy, t;, v;) generates a

linear interpolation between times f and ¢;, with the value of the interpolation being v at time ¢, and v/
at time t; Mechanisms for composing the effects of the various functions are also provided.

For notational convenience, we permit the tuples of the animation space to take the form
type( attribute = value, attribute = value, ...)

where each attribute is the name of an object attribute and each value is a value of the appropriate type. It
is not necessary to specify values for all the attributes of the object; defaults are used for any value not
specified. For example, the tuple

line( from = [0,0,0], to = [5,0,0])

represents a line object whose endpoints are at coordinates (0,0,0) and (5,0,0). The line would be colored
white (the default for that attribute).

In the diffusing computations example, we can represent each node by a sphere and each link by a
line. Using a simple mapping, spheres and lines representing the tree simply appear and disappear. Two
rules which accomplish this are:

coord :
node_object( coord )
= sphere( center = coord, radius = sphererad )

ncoord, pcoord :
link_object( ncoord, pcoord )
= line( from = ncoord, to = pcoord )

It should be noted that we permit the use of unification in our rules; thus, the variables in the above rules
are unified with coordinates (lists of three elements). This is obviously more convenient than requiring the
user to use separate variables for the X-, Y-, and Z-coordinates and provide a list of three variables as a
pattern. In addition, note the use of the constant sphererad; Pavane permits constants to be defined and used
in the same way as functions.

We can improve the appearance of the visualization by animating the addition and removal of the
spheres and lines. The proposed animation is accomplished by recognizing three separate cases: the
addition of an object, the persistence of an object, and the removal of an object. We need separate rules for
each of these cases. Consider first the addition of a node to the tree, resulting in the addition of a sphere and
(usually) a line to the image. Assume we want to animate this as follows: the line grows out from the
parent sphere until it reaches the position of the new sphere; the new sphere then expands outward from a
point to its full radius. This is accomplished by the following rules (recall that when using a differential
mapping we distinguish between the current and the previous instances of the input space by attaching the
prefix old for patterns that are to match the previous instance and omit the prefix on patterns that match the
current instance):

ncoord, pcoord :
link_object( ncoord, pcoord ), —old.link_object( ncoord, pcoord )
= line( lifetime =[ 1, 10 ], from = pcoord, to = ramp( 1, pcoord, 5, ncoord ) )
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coord :
node_object( coord ), —old.node_object( coord )
= sphere( lifetime = [ 5, 10 ], center = coord, radius = ramp( 5, 0.0, 10, sphererad ) )

The first rule detects when a line is added and generates a line which will be present from frame 1
to frame 10 (the lifetime attribute). One endpoint of the line will be at the center of the parent (location
pcoord); the other endpoint will move from the center of the parent to the center of the child between frames
1 and 5, and will remain at the center of the child thereafter. The second rule generates a sphere which is
present from frame 5 to frame 10; the sphere's radius changes from 0.0 at frame 5 to sphererad at frame 10.
Together, the two rules achieve the effect of a line growing from the parent to the location of the child, then
the sphere growing outward from that point. The frame numbers were chosen to produce a pleasing effect
in the final animation, and could be represented by named constants like sphererad. Our ability to rapidly
change the visualization by changing such constants is quite helpful in development.

The rules which detect the case where a line or sphere is present in both the previous and current
spaces are:

ncoord, pcoord :
link_object( ncoord, pcoord ), old.link_object( ncoord, pcoord )
= line( from = pcoord, to = ncoord )

coord :
node_object( coord ), old.node_object( coord )
= sphere( center = coord, radius = sphererad )

We omit the rules which accomplish the removal of a line and sphere, as they are quite similar to those for
the addition.

3.4. The frame generation mapping—producing the final image

The animation tuples are interpreted and rendered by the frame generation mapping, which given a
collection of animation tuples produces a sequence of frames. Each frame is a “slice” through the 4-D
animation space and consists of a collection of primitive graphical objects in 3-D space (the three spatial
dimensions). The frame generation mapping is performed by an interpreter which makes direct use of the
rendering capabilities of some graphics workstation (the Personal Iris in our case) to convert each successive
frame as an image. The rapid sequencing from one frame to another produces the animation effects.

The behavior of the frame generation mapping is not under the control of the constructor of the
visualization; no rules need to be written to specify its behavior. We therefore provide only a brief
discussion of the operational behavior of our particular implementation of the frame generation mapping,
which we call SwarmView. In addition to performing the frame generation mapping, SwarmView handles
user manipulation of the viewpoint, performs lighting effects, and allows recording and playback of
completed animations.

Given an animation space, SwarmView first determines how many frames must be generated for
the transition. This is done be examining the time arguments of all the functions and the lifetime attributes
of all the objects (the lifetime attribute is a pair of values [¢,,;,,00¢,,,,] which indicates that the object is to
be produced only between frames ¢,,;,, and t,,,,). The maximum value of any time involved is used as the
number of frames to be generated. Once this is determined, the sequence of frames is produced and
displayed. In each frame, each animation tuple is used to determine the attributes of the graphical object.
This is done by evaluating the value assigned to each attribute (which is either a constant or a time-
dependent function) at the “current” time, i.e., the frame count. For example, the animation space tuple

line( from=[0,0,0 ], to =ramp( O, [2, 2, 2], 4, [4, 6, -2] ) )

produces, for frames O through 4, the primitive graphical objects
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Figure 2: One frame from a visualization of the diffusing computations problem.

This frame is viewed from a position slightly above the X-Y plane; the positive Z axis is directed upward. The
graphical tree representing the computation’s process-activation history and termination-detection algorithm is
located in the middle of the figure; the node associated with the computation’s environment is the one with the
greatest Z-coordinate. By examining the tree, we can see that the environment has activated three other
processes, one of which has activated a fourth process.

The visualization rules presented in this paper have been augmented with additional rules to produce the graph
above the tree, which captures the state of the processes and communication channels. Active processes are
represented as green circles, while inactive processes are represented as red. The addition of a message or signal to
a communication channel is represented by an animation in which a small colored segment traverses the line
representing the channel from the sender to the receiver; this cannot be properly illustrated in the print medium.

The state graph is constructed at a uniform Z-coordinate somewhat greater than that of the environment; the X and
Y coordinates of each of the circles in the graph are the same as the coordinates of the corresponding elements of
the tree. The two portions of the representation are thus visually connected, and this connection can be perceived
in this image by comparing the green (active) circles of the state graph with the spheres in the tree. The viewer of
the visualization can change the viewpoint (for example, by rotating the entire image about the Z-axis) to better
emphasize this relationship.

A 7-minute video tape entitled Diffusing Computations contains the complete animation and is available on
request.
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frame O: line with endpoints [ 0,0,0 Jand [ 2, 2, 2 ]
frame 1: line with endpoints [ 0, 0,0 Jand [ 2.5, 3, 1]
frame 2: line with endpoints [ 0,0,0 ] and [ 3,4, 0]
frame 3: line with endpoints [ 0,0,0 Jand [ 3.5, 5, -1 ]
frame 4-: line with endpoints [ 0,0,0 J and [ 4, 6, -2 ]

Once the entire collection of tuples has been evaluated, the image corresponding to each frame is
generated. This is simply a matter of setting up (under user control) the viewpoint and lighting and then,
for each of the primitive graphical objects, performing whatever function calls are necessary to produce the
object.

The visualization rules can be easily augmented and modified at any time during the visualization
process, either for the sake of refining the visual presentation or out of the desire to visually explore
additional properties of the computation. Rules that rely on the use of historical information which is not
available at the time the rule is first introduced may require the restart of the execution. All other rules take
effect as soon as a new atomic transformation of the dataspace is accomplished. Figure 2, for instance,
captures one frame from a video animation in which the operational details of the network computation and
the abstract representation of the termination detection protocol are captured together. The video was
generated by adding new rules needed to capture the state of processes and channels and by modifying the
animation rules above to improve their visual impact. (Spheres drop from the network representation while
growing to the desired size and attach themselves to the parent sphere by sprouting the connecting line.)
Naturally, the limitations of the print media prevent capturing the full effect of the visualization. In
particular, we cannot effectively capture such animation effects as the growth of the sphere and the flow of
messages.

4. Visualization Methodology

In the previous section we showed how one can declaratively specify complex visualizations. We
turn our attention to a closer examination of the process by which we decide to select one particular visual
representation over others and by which we identify minimal animation requirements, e.g., movement,
highlighting, etc. The basis for our approach is the hypothesis that program properties which are
significant in correctness proofs must be captured by any meaningful visual representation of the program.
The strategy involves an analysis of the program proof (or proof outline) and the application of a number of
heuristics that foster the transfiguration of (program-wide) computational properties into appropriate visual
counterparts. In this section we apply this approach to a second program; we do not list the explicit rules
involved in producing the final image.

The computation which we wish to visualize is the Bagger problem [12]. This problem is a
variant of bin-packing in which a collection of items having various positive integer weights are placed into
one or more bags; the items in each bag are ordered, and items within a bag must be placed from largest to
smallest by weight. The bags all have a capacity indicating how much weight the bag can hold; this
capacity is the same for all bags and is identified by the symbol H. A number of solutions to this problem
have been developed; we use the Swarm solution and proof presented in [10]. In this solution, the only
tuple type is the item type; a tuple item(id, weight, bag, position) indicates that the item with unique
identifier id has the given weight and is located in the bag at the indicated position. Item and bag identifiers
are positive integers, with item identifiers assuming all values between 1 and N, the number of items. By
convention, the bag identifier O is used for items that have not yet been placed in a bag. Note that there is
no explicit representation of a bag; rather, a bag is defined by the items that are placed in it.

The Swarm solution to Bagger (Figure 3) has three transaction types. The transactions
Track_Weight and Make_Bag work together to generate new bags as needed. Specifically, Track_Weight
detects the condition where the heaviest unbagged item does not fit in any of the existing bags and creates a
Make_Bag transaction. In turn, Make_Bag places the first item into the new bag and creates a
Track_Weight and a Bag_InOtransaction. At all times there is either a Track_Weight or a Make_Bag
transaction (but not both). The Bag_In transaction adds items to a particular bag until the bag is full (i.e.,
none of the remaining unbagged items fit in the bag). There may be several Bag_In transactions at any
time, one for each bag that is not yet full.
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Both Track_Weight and Bag_In exhibit tracking behavior. One of the parameters of the transaction
type is an item weight, and the transaction queries the dataspace for an item of that weight. If such an item
is found, the transaction takes one action (creating a Make_Bag tuple in the case of Track_Weight and
adding the item to the bag in Bag_In); if the item is not found, the transaction reduces the weight by one
and searches for the new weight. This comparison between item weights and bag capacities is key to the
program—a number of proof properties refer to it—and, therefore, plays a major role in constructing the
visualization.

We are now ready to begin development of the visualization. The final visualization will be
composed of a number of stages (the mappings discussed in the previous section); however, we start by
creating a specification of the overall mapping and only later develop the rules needed to implement the
specification. The first step is to determine what aspects of the computation need to be represented and to
select appropriate graphical representations of these aspects.

Using our methodological guidelines, we examine the correctness properties of the proof; in
particular, we focus on safety properties (unless, invariant, stable, constant—see [2]) which indicate
what the program is allowed and is not allowed to do. It is among these properties that we find clues to
what aspects of the program state must be represented by geometric objects. In the case at hand, we find a
number of invariants related to items and bags. For example, we find

*  There is exactly one item tuple for each of the item identifiers.

*  The weight associated with a particular item identifier is constant.

* Once an item is placed into a bag, neither the item's bag nor its position in the bag change.
e No two items can be placed in the same position in a single bag.

e All bags have a constant capacity (which is the same for all bags).

e The sum of the weights of all items in a bag does not exceed the bag's capacity.

These properties indicate that some representation of the items and the bags is essential to the visualization.
In itself, this is hardly interesting. However, we can now use the properties to select appropriate graphical
representations.

Since there is exactly one item for each identifier at all times, and each item has a specific constant
weight, we should select as our representation of the items some graphical object with an attribute to which
the weight may be mapped. Almost any scalar attribute could be used; we could, for example, use a color
spectrum, with blue hues representing the smaller items and red the larger. However, the last property
listed above indicates that the sum of weights is significant and we should therefore choose a property
amenable to summation—color would not be good, because the concept that “blue + blue = yellow” is
hardly natural. A more appropriate measurement would be a dimension, which is amenable to summation;
indeed, dimensions can be readily summed by positioning the objects such that the dimensions in question
form segments of a line. Accordingly, we might select rectangles to represent the items and make one
dimension of the rectangle proportionate to the item's weight.

A similar representation is suggested for bags, with the corresponding measurement being the
bag's capacity. However, the bag's situation is somewhat more complex. In the Swarm formulation of the
Bagger program, bags are abstract entities. There is no explicit representation of bags in the Swarm
dataspace; instead, bags exist if (and only if) items have been placed within them. Thus, whereas the item
tuples are in one-to-one correspondence with the rectangles representing the items, the rectangles
representing bags must be generated with somewhat more care. In addition, we probably want to emphasize
the aggregate nature of bags; since a bag is represented by the items contained within it, we may want to
position the representations of the items and the representations of the bags in such a way as to emphasize
this relationship. The ability to capture and represent such abstract entities and their properties is one of the
major strengths of our declarative approach to visualization.
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Program Bagger (H, N, weight : natural(H), natural(N), weight[1..N] of natural)

tuple types
[I,w,B,n : natural(I), natural(w), 0 < w < H, natural(B), natural(n) : item(I,w,B,n)]

transaction types
[B,c,n,w : natural(B), natural(c), O = ¢ < H, natural(n), natural(w), 0 <w <H ::
Track_Weight(B,w) =
I,B',c',n',w' : item(I,w,0,0), Bag_In(B',c',n',w"), (W =c') =
Track_Weight(B,w)
I [V I:=item(I,w,0,0)], (1 <w) — Track_Weight(B,w-1)
I :NOR, (0 <w)— Make_Bag(B,w);
Make_Bag(B,w) =
I: item(I,w,0,0)f —
item(I,w,B,1), Bag_In(B,H-w,2,min(H-w,w)), Track_Weight(B+1,w);
Bag_In(B,c,n,w) =
I: item(I,w,0,0)f —
item(I,w,B,n), Bag_In(B,c-w,n+1,min(c-w,w))
Il :NOR, (0 <¢), (1 <w) = Bag_In(B,c,n,w-1)
]

initialization
[Lw:0 <I£N:: item(I, weight(I),0,0) ], Track_Weight(1,H)

Figure 3: Swarm solution to the Bagger program.

All data is encapsulated in the item tuple type. The four components of this tuple give the unique item
identifier, the item’s weight, the bag containing the item, and the position of the item in the bag. The
special bag identifier O is used to indicate the item is unbagged; this is reflected in the initialization
section, where each item is created with the third and fourth components set to 0.

Three transaction types are used in the solution. The Track_Weight transaction type has two parameters
which are the number of the next new bag and the weight which is being tracked. The Make_Bag
transactions two parameters are the number of the bag being created and the weight of the first item to be
placed in the bag. Bag_In has four components: the bag number, the remaining capacity of the bag, the
position in the bag of the next item to be packed, and the item weight that the bag is tracking.

Track_Weight determines when new bags must be created. The first subtransaction of Track_Weight
succeeds if an unbagged item and bag can be found such that the item is of the weight being tracked and
can fit in the bag; the effect of this subtransaction is simply to re-create the Track_Weight transaction.
The second subtransaction succeeds if there are no items of the tracked weight, and creates a
Track_Weight which searches for an item with weight one less than the current search weight. The third
transaction succeeds if neither of the previous two do, i.e., if there is some unbagged item that will not
fit into any of the bags; this transaction creates a Make_Bag transaction.

Make_Bag locates an unbagged item of the indicated weight, puts it into the selected bag, creates a
Bag_In transaction to work on the new bag, and creates a Track_Weight transaction. The min
expression computes the search weight; it will be either the original search weight or the remaining
capacity of the bag, whichever is smaller.

Bag_In uses two subtransactions to add items to a bag. The first subtransaction attempts to find an
unbagged item of the search weight; if one is found, it is put in the bag. The min expression is again
used to compute the next search weight. The second subtransaction creates a Bag_In with a search
weight one less, provided the bag still has some capacity and the new search weight will be at least 1.
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Summarizing our representation decisions, both bags and items will be represented in the final
image by rectangles. Bag rectangles have some (arbitrary) width, and a length proportionate to the bag
capacity. Item rectangles fall into two groups, those representing unbagged items and those representing
bagged items; this distinction will probably be made in the proof space and maintained throughout the
visualization, since the two types require different treatment. All item rectangles will have the same width;
the length of a rectangle will be proportionate to the weight of the item represented, using the same
proportionality constant as is used for the bag lengths. The position of the item rectangles depends on the
item type. Unbagged items can be placed more-or-less arbitrarily (this decision will be modified soon!).
Bagged items are aligned (visually “summed”) within the representation of the bag; the position of a
particular item depends both on the position of the bag containing that item and on the weights of the items
positioned “before” that item in the bag.

One possible arrangement is illustrated in Figure 4. We give each item rectangle a distinct,
arbitrary color (represented by gray tones in the figure). This is not prompted by any of the correctness
properties, but is imposed by the requirement that the rectangles be easily distinguished. This
representation simultaneously captures three of the correctness properties listed above: once placed, items
remain in the same position in the bag; no two items are at the same position in the same bag; and the sum
of the item weights does not exceed the bag capacity.

We will eventually define functions that compute the positions of the rectangles representing bags
and items. The discussion in the previous paragraph, coupled with the invariants relating to bagged item
positions and weights and with the desire to visually link the representation of a bag with the
representations of the items contained within the bag, lead us to develop certain constraints that apply to
these functions. Predicates over the program state are thus reshaped as geometric constraints. Below is an
example of how this happen.

Let us assume that rectangles are represented by the coordinate of one corner and the X and Y
dimensions. Furthermore, let bagyp(B) represent the function that produces the X-coordinate of a bag B,

bagyp(B) be the function that produces the Y-coordinate of a bag B, and baggedyp(I) and baggedyp(I) be the

corresponding functions for the positions of bagged items. Assume also that the length of a rectangle is
determined by multiplying the item weight or bag capacity by the constant K. Then the following
constraints on these functions reflect the invariants we considered and our choice of layout in the following
manner:

l'is in B = baggedyxp(I) = bagxp(B)
I'is in B at position P = baggedyp(I) = bagyp(B) +
K x (Zi:iisin B at position p, p < P, and i has weight w : w)

In other words, the rectangle for a bagged item has the same X-coordinate as its bag, while its Y-coordinate
is the Y-coordinate of the bag plus K times the sum of all weights of items which appear “before” the item
in the bag. The latter positioning constraint is prompted by the last invariant listed earlier and by the
decision to represent this invariant by visually summing lengths.

The safety properties listed above suggest one more characteristic of the final visualization. The
first two properties indicate that the number of items and the weight of each individual item are constant.
Imagine for a moment the final visualization; one important change in the image takes place when an
unbagged item becomes bagged. We could cause this to occur instantaneously; the rectangle representing
the item would disappear and reappear within one of the bags. However, the two properties indicate that in
this case such “teleportation” would be undesirable. These properties require that the items and their
weights are constant; we should therefore exploit visual continuity to convey the sense of constancy.
Rather than teleportation, a steady movement from the old position to the new is indicated; this allows the
viewer to instantly perceive that the number of rectangles and the length of each rectangle are constant.
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Figure 4: An initial layout of the
Bagger visualization.

The representations of items and bags
(filled and unfilled rectangles, respectively)

D have no particular arrangement. The

rectangles representing bagged items are
stacked within the bags, thus visually

| illustrating both the ordering of the items
l and the summing of their weights.

We can now consider several other properties of the computation and see what they indicate about
the representation:

e  The number of unbagged items is a non-increasing function of time which eventually reaches 0.

*  The weight which the Track_Weight transaction is tracking is always greater than or equal to
the largest weight of all unbagged items.

* A new bag is created if and only if Track_Weight detects an unbagged item whose weight is
greater than the remaining capacities of all bags for which a Bag_In transaction exists.

e The weight which each Bag_In transaction is tracking is always less than or equal to the
remaining capacity of the transaction's bag.

e No item has a weight which exceeds the weight which a Bag_In transaction is tracking and is
also less than the remaining capacity of that transaction's bag.

The first of these is a progress property; the others are safety properties which constrain the “tracking”
behavior discussed above. The progress property indicates that the decrease in the number of unbagged
items is significant. This indicates a flaw in the layout of Figure 4, where bags and unbagged items are
indiscriminately positioned; we need to separate the unbagged items from the bags so that a decrease in the
number of unbagged items is easily observed. One simple way of doing this is to make the X-coordinate of
the objects a function of the identifier, with unbagged items mapping to negative X-coordinates and bags
(and bagged items) mapping to positive coordinates.

The tracking properties indicate that comparison between the weights of the unbagged items and
the remaining capacities of the active bags is of primary importance to the algorithm. Both of these
concepts are visually represented by lengths; the properties indicate that the lengths should be positioned in
the image in such a way that the relationship can be instantly perceived. One possible arrangement is
indicated in Figure 5, where the rectangles representing the unbagged items are aligned with the tops of the
rectangles representing the bags.

The program properties we are currently considering also suggest that we need to represent
additional aspects of the computation; specifically, we need to know what weight the Track_Weight
transaction is tracking, and for each active Bag_In we need the same information. This can be represented
simply enough by adding marks (lines or arrows) as illustrated in Figure 5. The operation of the
Track_Weight transaction is represented by the segment extending the length of the unbagged items, while
the Bag_In activity is represented by the arrows next to each bag. These marks function as gauges, moving
upward to indicate the measure that is being tested.
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e > Figure 5: Modified Bagger
[ visualization.

L. L The weights of unbagged items
and the capacities of bags can be
— visually compared, paralleling the
comparison performed in the
algorithm. The solid horizontal
line shows the weight which
Track_Weight is examining,
while the dotted arrows show the
weights which each of the active
Bag _In transactions is
examining.

The Bag_In marks also capture some progress properties: the movement of the marks indicates the
search behavior of each transaction, while the marks disappear as the Bag_In transactions complete their
operation. Progress is here captured by a steady movement toward a boundary (the end of the bag); we have
found such steady motion to be a good representation of progress conditions.

The choice of suitable boundaries for these marks is somewhat difficult. The second and third
invariants above indicate that Track_Weight is simultaneously comparing all the weights of unbagged items
and all the remaining bag capacities, so appropriate bounds for this line would extend the entire length of
the visualization (i.e, spanning the representation of all the bags and all the unbagged items). Similarly,
the fourth and fifth invariants indicate that the mark for each active Bag_In transaction should extend from
the transaction’s bag across all the unbagged items. Including all these marks results in a somewhat
confusing image. We can mitigate this somewhat by making the Bag_In arrows “weaker”, for example by
using a faint color for the arrows (indicated by dotted lines in the figure). This permits visual comparison
of the values without cluttering the image.

Addition of these marks brings out a minor problem with this representation. The layout of
Figure 5 has the property that when we reduce the capacity of a bag, the reduction is visually represented by
the removal of space from the “wrong” end of the remaining space, as represented diagrammatically in
Figure 6. Ideally, we want a layout that permits easy comparison of all four elements shown there; that is,
the representations of the item weights, of the bag capacities, of the Bag_In and Track_Weight tracking, and
of the space removed by adding an item to the bag should all be visually aligned.

Unbagged  New Capacity
Weight Tracked

Removed i' Capacity

Capacity

Figure 6: Elements which should be aligned to permit easy visual comparison.

When the unbagged item show at left is added to the bag, the item is placed at the lower end of the
remaining capacity being tracked by the Bag_In transaction. The tracking mark then moves upward to
the level indicated by New Capacity.
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Figure 7: Final layout of the
Bagger visualization.

As unbagged items are placed into
the bags, the representation of the
bag, its contents, and the tracking
arrow all sink downward. All four
lengths from Figure 6 are aligned
in this layout.

Such a layout is obtained in Figure 7. In this layout of the elements, the lengths to be visually
compared are all arranged so as to extend upward from some arbitrary horizontal line; this line is included in
the layout as a dashed line (color would serve to distinguish the line in the final visualization). Note that
the visual alignment of the lengths does come at some cost: We must arrange the visualization so that the
representations of the bags as well as all the bagged items “sink” downward when new items are added to the
bag. This involves a certain extra complexity in the rules, but more significantly the visual confirmation
that all bags have the same total capacity is not as clear as in Figure 5. Here again we rely on visual
continuity to reassure the viewer that the total capacity does not change; smooth movement of items and
bags allows the viewer to perceive readily that they do not change size.

The development of the visualization is now essentially complete; all that remains is to write the
rules that will produce the desired effects. As mentioned in the beginning of this section, we omit the
presentation of the rules; however, we outline below the information produced by each of the mappings.

The proof mapping will produce five basic types of information, which will be captured by five
distinct tuple types. For unbagged items, we require the item identifier and weight. The information about
bagged items includes the item identifier, weight, bag, and the sum of the weights of all items located
before the item in the bag (the last is required for positioning the item). Bag information includes the bag
identifier and the sum of the weights of all items in the bag; note that this information is of use in
positioning the bag, but can also be used when computing the position of the bagged items. Finally, we
have two types of information involving the marks: one for the Track_Weight and one for each active
Bag_In. In both cases, we need to know the value being tracked; in addition, for the Bag_In we need to
know the identifier of the bag.

The object mapping will generate abstract geometric objects for the various elements. We will
retain five basic types of information, corresponding to the five types contained in the proof space.
However, the information for each type may be gathered from several tuples in the proof space; for
example, the positioning of a bagged item depends both on the individual attributes of the item and on the
attributes of its bag, since in our layout the position of the bags changes. Suitable functions will be
defined to compute the coordinates of the layouts; these functions must obey certain restrictions as discussed
above.

The animation mapping detects changes in the object space and generates the final animation
space. Both for reasons of visual continuity and to improve the appearance of the visualization, we wish to
capture several different visual events. Among these are the movement of unbagged rectangles to bagged
rectangles, the “sinking” of bags (and bagged rectangles) when new items are added, and the movement of
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the tracking marks. In order to detect these types of transitions, we need a way to uniquely identify
particular abstract objects. In our case, we will use the item and bag identifiers from the original program.

The final visualization captures most of the correctness properties of the computation and also
shows the algorithm’s behavior (including the operations of transactions, which are captured by the marks
used to show the tracking invariants). For this reason, the final visualization is useful both for pedagogical
(explaining the algorithm’s operation), and for monitoring (examining and verifying the operation)
purposes.

5. The Pavane Environment

The Pavane system consists of three primary components. SwarmParse is the Pavane compiler;
its function is to translate programs and visualizations written in Swarm into executable form. SwarmExec
is a run-time package which executes compiled Swarm programs and visualization rules and produces
animation traces (representations of instances of the animation space). SwarmView reads animation traces
(from SwarmExec, or from any other source which produces the traces) and renders the images described by
the traces. In our current implementation of Pavane, SwarmParse and SwarmView are written in C and
SwarmExec is written in Prolog. SwarmParse and SwarmExec both run on a Macintosh IIfx; SwarmView
runs on a Silicon Graphics Personal Iris. SwarmExec and SwarmView execute concurrently,
communicating via an Ethernet connection between the machines.

Both SwarmView and SwarmExec have been designed to be capable of interfacing with other
programs. SwarmView can accept and display animation traces from any source which observes the correct
protocols. In the SwarmExec package, the section which performs the visualization rules and transmits the
results is self-contained and can perform these functions for any underlying computation which produces a
Swarm dataspace. For example, we could read information over the Ethernet from another machine, assert
it into the Prolog database, apply the visualization rules, and transmit the results to SwarmView. This
ability to “patch in” at any point in the visualization pipeline promises to be quite useful; we have already
taken advantage of this by writing a replay facility which simply connects to SwarmView and sends the
contents of a previously-saved file of animation traces.

5.1 SwarmParse

SwarmParse, the Pavane compiler, uses the LL(1) parsing method to translate programs written in
Swarm (extended by function definitions and visualization rules) into Prolog files suitable for use by
SwarmExec. We refer to the output language as SwarmProlog, since (although it is simply Prolog) the
SwarmProlog elements require the framework provided by SwarmExec to be executed. Three main
components of the extended Swarm language are represented in SwarmProlog: the Swarm dataspace and
visualization spaces, the Swarm transaction definitions, and the visualization mappings. The next
subsections describe how SwarmParse represents each of these components.

Dataspaces. Swarm, as extended with visualization capabilities, uses several distinct dataspaces
(collections of tuples) representing the computation state. These spaces include the fuple space, the
transaction space and the synchrony relation of Swarm, and the proof, previous proof, object, previous
object, and animation spaces of the visualization extension.

Each of these spaces is represented by a collection of facts in the Prolog database. Each fact has
the form

space_nanme( tuple_type( tuple_paranmeters ) ).

where space_nane is one of t upl e, pr oof , etc., t upl e_t ype is the Swarm tuple type, and

t upl e_par amet er s is the parameter list (if any) of the particular tuple. SwarmParse makes
appropriate syntactic adjustments to accommodate Prolog syntax; for example, the t upl e_t ype and all
other atoms must begin with small letters, since capital letters are variables in Prolog.

To create the initial contents of the dataspace, a Prolog goal i ni ti al i ze_dat aspace is
provided as part of the completed SwarmProlog program. The function of this goal is to generate the initial
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contents of the dataspaces, using the Prolog assert goal. SwarmParse translates the initialization section
of the Swarm code directly into the i ni ti al i ze_dat aspace goal.

Transaction definitions. A Swarm transaction consists of a collection of parallel
subtransactions, each consisting of a list of variables, a query part, and an action part:

transaction(parameters) =
variables| : query| — actiony

Il variablesy : queryy — actionp

SwarmParse translates such a transaction into a Prolog goal which is executed by the SwarmExec run-time
package. The goal consists of a sequence of sub-goals, each the translation of one of the subtransactions.
The variables are represented by Prolog variables. SwarmParse automatically generates a Prolog variable
for each Swarm variable. Some care must be taken with this process, since the scope rules of Swarm and
Prolog differ—in Swarm the variable scope is confined to its subtransaction, while in Prolog, the variable's
scope is the entire goal.

The translation of the query and action is quite direct; for example, to determine if the tuple #(/) is
in the dataspace, the Prolog goal t upl e(t (1)) is used, while to insert such a tuple the goal
insert_tuple(tuple(t(l))). Expressions occurring within a tuple must be pulled out and
separately translated so that the result of evaluating the expression can be determined (in Prolog, 1 + 1 is
not 2, but a structured object having the functor +). SwarmExec also provides goals to perform the more
complex types of queries and actions, including goals to perform quantifiers, summations, generators, and
so forth.

Visualization mappings. A visualization consists of three distinct mappings (collections of
visualization rules), the proof mapping, the object mapping, and the animation mapping. Each mapping
transforms one or more input spaces to an output space; for example, the proof mapping transforms the
state space (the Swarm dataspace) into the object space. A visualization rule consists of a list of variables,
a query over one or more spaces, and a list of tuples to be produced:

variables : query = production

The interpretation of such a rule is as follows: For all instantiations of the variables such that the query is
true, include in the output space the list of tuples appearing in the production. This is exactly the same
definition as a Swarm generator, except that queries over the dataspace are not permitted in a Swarm
generator; however, the same translation mechanism suffices.

In addition to the rule translations, the collection of rules which make up each mapping must be
represented. This is achieved by providing lists of all the rule names generated by SwarmParse.

5.2 SwarmExec

SwarmExec, the Pavane run-time package for the execution of SwarmProlog programs, is written
in AAIS Prolog. To use SwarmExec, the user enters the Prolog environment, consults the file containing
the SwarmExec code, and then consults the file(s) containing the SwarmProlog produced by SwarmParse.
The user then executes the goal Swar m_r un, which begins the interpretation cycle. (A more convenient
interface for starting SwarmExec and consulting user programs is contemplated.)

SwarmExec simulates Swarm execution in a serial fashion; the implicit parallelism of Swarm, in
which two transactions can be executed simultaneously provided they do not interfere, is not accommodated.
However, SwarmExec does provide for explicit parallelism through the use of the synchronic group; all
transactions in a synchronic group will be executed in effective parallelism.

Primary control. The swar m r un goal is executed following loading of the files containing
the SwarmProlog goals. All remaining execution is controlled by swar m r un. The swar m r un goal
first initiates communication with the Silicon Graphics Personal Iris (used to render the visualizations) over
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the Ethernet. As a result of initiating this connection, SwarmView begins running on the Personal Iris.
The “control panel” of the combined SwarmExec/SwarmView system appears on the Personal Iris screen;
the user controls the execution of the simulation from the Iris while examining the results of the
visualization.

swar m_r un then creates the initial dataspace, using the i ni ti al i ze_dat aspace goal
generated by SwarmParse. After this initialization is completed, the goal swar m st ep is repeatedly
called. swar m st ep succeeds only if the execution of SwarmExec finishes (because the user stops
execution) and fails otherwise. When swar m_st ep succeeds, execution terminates and the connection
with the Personal Iris is closed.

The goal swar m st ep interacts with the Personal Iris to receive a command from the user. The
commands include performing a single atomic action of the Swarm program, restarting the Swarm
computation from the beginning, and ending the computation (the last is the only case in which the
swar m st ep goal succeeds).

Execution of an atomic action. When an atomic action is performed, a transaction is first
selected in a fair manner. This is currently achieved by selecting the first transaction found in the Prolog
database, and adding new transaction instances to the end of the database; we are contemplating several other
techniques which will provide fairness and a greater degree of nondeterminism. If no transaction can be
found, the atomic action is completed; note that this does not terminate execution of SwarmExec and
SwarmView, but the fact that the computation has completed is signaled to SwarmView and displayed for
the user.

If a transaction is found, the synchronic group to which the transaction belongs is determined.
This is done by performing a search from the initial transaction through the closure of the synchrony
relation. The synchronic group is represented as a Prolog list of transactions with parameters. The group
may contain transactions which are not actually present in the dataspace; by the Swarm definition, only
those transactions which are actually present will be executed.

The next step is to prepare for execution of the group. The sw_r eadyupdat e goal performs
this task. The most important function of this goal is to initialize a collection of counters which are used
in the processing of the special Swarm queries such as NOR, NAND, and so forth. These counters store
the total number of local subtransactions (those not involving special queries) which are executed and the
number of these transactions which succeeded and failed.

Execution of the group is performed by traversing the list of transactions making up the group. If
a transaction in the group is also present in the dataspace, it is executed by the Sw_exect r ans goal.
This goal first asserts into the Prolog database a fact of the form

sw del etion(true,trans(Trans)).

The semantics of Swarm requires that all queries involved in a single atomic operation (execution of a
synchronic group) must be performed before the dataspace is altered. We therefore record all dataspace
modifications, such as the deletion of a transaction instance when the transaction is executed, in the Prolog
database using the sw_del eti on and sw_i nserti on tuples. Only after execution of the group is
completed are these tuples processed to update the dataspace. The first component of a sw_del et i on or
Sw_i nserti on tuple is a tag which gives the type of subtransaction which resulted in the modification
(i.e.,l ocal ,true, nor, etc.); the second component is the element to be removed or added.

After the fact that the transaction should be removed from the dataspace is recorded, the transaction
is executed using the cal | goal. The Swarm transaction consists of a sequence of subtransactions, each
represented in the form

set querytype( type ),
( translation of query, !, translation of action, itsucceeded ; itfailed )
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The set quer yt ype goal makes a temporary record of the type of the subtransaction; this is
then referenced when generating sw_del et i on or sw_i nserti on tuples. The query translation is
performed; if it succeeds, the action is performed (possibly generating sw_del et i on and
SW_i nserti on tuples) and the goal i t succeeded is executed. If the query fails, the second part of
the alternative construct, i.e. the goal i t f ai | ed, is executed.The i t succeeded and i t f ai | ed goals
modify as appropriate the counters of the total number of local subtransactions and the number which
succeeded and failed.

After all transactions in the synchronic group are executed, the dataspace is updated by the
sw_doupdat e goal. The first action of this goal is to determine what types of special transactions are
successful; for example, the OR subtransactions succeed if any of the local subtransactions succeeded, i.e. if
the count of successful local subtransactions is greater than zero. Local subtransactions are always
successful. The sw_del eti on and sw_i nserti on tuples are then processed, with the deletions
performed before the insertions (again, this is Swarm semantics). Only tuples which have been tagged with
a successful type are processed; the others are discarded.

After a synchronic group has been processed (whether or not a group was actually found and
performed), the visualization rules are applied to the state space and the resulting animation space is
transmitted to the Personal Iris. This process begins by copying the current proof space and object space to
the previous proof and previous object spaces respectively, then clearing the proof, object, and animation
spaces. Each of the three mappings —proof, object, and animation—is then applied in turn to generate the
spaces. Applying the rules is simply a matter of finding the list of rule names, then calling each of the
rules.

Interpretation of generators. The Swarm generator construct has the form
[OvariablesO:Opredicated:Olistd], which indicates the operation “for each instantiation of the variables such
that the predicate is true, create all the objects in the list”. The generator is particularly useful in the
initialization part of Swarm programs. As mentioned previously, the behavior of the visualization rules is
quite similar. Two additional Swarm constructs, the subtransaction generator (which is used in transactions
to specify a collection of subtransactions) and the universal quantifier (V v : p : q) are also similar in
behavior. In all four cases, we want to determine all instantiations of a collection of variables such that a
particular predicate (or query) is true, then perform some action for all such instantiations.

Two Prolog goals, f oral | and f oral | _wor ker, each with two clauses, suffice to provide all
four of these constructs. f oral | uses the built-in Prolog goal bagof to find all instantiations of a
variable list such that a goal (corresponding the the predicate part of the generator) can be satisfied. The list
of all such instantiations is provided to f or al | _wor ker , which recursively processes the list and
performs the action for each variable instantiation in the list.

As a general rule, each invocation of f or al | will be accompanied by definitions of two
additional goals used for the predicate and action goals. Because of the behavior of bagof , some extra
syntactic elements must be included in invocations of f or al | . These elements serve to existentially
quantify the variables of the variable list for the bagof goal, ensuring all possible instantiations will be
found.

A similar t her eexi st s goal is also provided, with the same syntactic form (which is not
actually required in this case; however, keeping the forms similar simplified some aspects of SwarmParse).
t her eexi st s succeeds if it can find any instantiations of the variables for which both predicates succeed.
Finally, several goals are provided to produce sums, products, and so forth. These are all similar in form
and closely related to the generator, except that for each instantiation of the variables an expression is
evaluated and some operation is applied to the list of values so obtained.

5.3 SwarmView

The SwarmView system actually consists of two parts, which together act as the server in a client-
server communications model using the Ethernet. The first part is a server daemon which runs
continuously. The daemon responds to requests for service by initiating the SwarmView program proper.
SwarmView then completes the connection and begins to interact with the client.
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In our current configuration, the client is the Macintosh running SwarmExec; however, the system
can service requests from any source. Both the daemon and SwarmView are implemented in C running
under Silicon Graphics' IRIX operating system. In addition, SwarmView uses the Silicon Graphics
graphical library for the rapid definition and display of graphics. The daemon is a standard example of its
type and will not be discussed further.

SwarmView has four major functions. The most important of these is the interaction with the
user; this interface provides both control of the computation (through the interface with SwarmExec) and
control of the user viewpoint. In addition, SwarmView reads and stores collections of animation tuples
from the client process. SwarmView also interprets the stored animation tuples to produce sequences of
frames consisting of collections of graphical objects in three-dimensional space. Finally, SwarmView
renders these graphical objects in a window on the Silicon Graphics screen.

User interactions. SwarmView interacts with the user in two ways: computation control and
viewpoint control. The “control panels” which provide the viewer interface to these facilities are illustrated
in Figure 8.

Control of the computation is provided by four buttons and three rotary switches; the viewer uses
the Silicon Graphics mouse to manipulate these controls. Each of the buttons sends a command to
SwarmExec. After sending the command, SwarmView waits for a response from the client; depending on
which button was selected, the response might be a simple acknowledgment or might be a new instance of
the animation space.

The Quit button sends a command to terminate the computation; when the response is received,
SwarmView closes the connection to SwarmExec and exits. The Reset button sends a command to restart
the computation from the initial dataspace; the response is the initial animation space. StepOindicates one
or more atomic actions of the computation should be performed; the response is the new animation space.
The number of steps which are to be performed can be entered by the user and appears in the box to the
right of the Step button. Go performs an unbounded series of steps. When either Go or Step is performed,
the Go button's label changes to Pause; this button halts the sending of step commands.
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Computation
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Rendering frame 2 of 10
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Figure 8. The SwarmView control panels.

A Figure 9. The polar viewing
Incidence model used by SwarmView.

The viewer’s eye is located by a
distance from the origin and two
angles. By changing these
parameters and the location of the
coordinate origin, the viewer can
observe any part of the
visualization.

Azimuth

The three rotary switches below the buttons are used to determine some parameters of the
computation's behavior. Visualize determines whether visualization rules will be applied and the animation
space transmitted; it is normally true. Queries and Scheduling are included for future expansions. If
Queries is true, SwarmExec will perform certain additional queries and display the results (for example,
listing all item tuples in the dataspace). If Scheduling is true, SwarmExec will select a synchronic group
based on user-provided scheduling rules.

Viewpoint control is provided by two buttons and four sliders. Once SwarmView has read and
stored an instance of the animation space, it begins generating and rendering the frames described by that
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animation space. The Pause View button stops the animation clock, allowing the viewer to examine a
single frame in greater detail. While the view is paused, the remaining viewpoint controls can still be used.

The four sliders control the actual viewpoint, i.e., the location of the viewer's eye in three-
dimensional space. SwarmView uses a polar viewing system as illustrated in figure 9; the user's eye is
located by a distance from the origin, an incidence angle measured from the Z-axis, and an azimuthal angle
measured in the X-Y plane. The Dist, Incid, and Azim sliders are used to set the values of these three
parameters. The Spin slider can be used to cause the azimuthal angle to steadily change; this causes the
image to rotate as the user's eye circles the Z-axis.

The location of the coordinate origin is controlled directly through the image. By “clicking and
dragging” in the image, the user shifts the center of the coordinate system in a corresponding manner. The
Reset ViewObutton restores the origin and viewpoint to their original values.

Animation space input and storage. The animation space tuples are transmitted from the
client as strings in response to a step or reset command. These strings are passed through a lexical analyzer
written in LEX and a parser written in YACC. YACC produces an LALR(1) parser with associated
actions; in this case, the actions are chosen such that each tuple parsed results in the creation of a dynamic
data structure of type SV_Obj ect and storage of this object in a list which represents the collection of
tuples.

An SV_QObj ect is actually a pointer to a C structure which includes a number of components.
One component is a pointer to the master description of the object’s type, which contains information
about the object parameters, the function used to render the object, and so on. Another component is an
array which stores the expressions assigned to each of the object parameters; this array is initialized with
default values during the parsing process and the entries are replaced with new values as the attributes are
parsed. Each entry is either a function or a constant value.

Functions are represented by objects of type SV_Func, which is again a pointer to a structure.
The information stored in this structure includes which of the (pre-defined) animation functions is
represented and the values of each of the function arguments. Values are represented by objects of type
SV_Val ue; values can be integers, double-precision floating point numbers, the special animation
constant ¢_max, or lists of any of the above.

Animation tuple interpretation. After a new animation space is read and stored,
SwarmView begins producing the frames represented by the animation space. Production of frames
continues until all frames described are produced (i.e., from frame counts O through the special number
t_max). At this point, SwarmView is once again ready to issue a step command and read a new animation
space; if the user does not choose to issue a step command, SwarmView will continue to produce the last
frame of the animation.

When a frame is produced, the linked list of SV_Qbj ect structures is processed. For each object,
every parameter is examined. If a function is defined for the parameter, the function is evaluated at the
current frame count (time) using the appropriate C routine and the resulting value is stored in the parameter.
The result of the processing is a list of objects, each having a value for each parameter. The objects are
then ready for rendering.

Rendering. Rendering refers to the transformation of the object descriptions to graphical form.
The process of rendering in SwarmView is greatly simplified by the hardware capabilities of the Personal
Iris and the software capabilities of the graphical library. The Personal Iris hardware provides many useful
capabilities in hardware, including: three-dimensional calculations; clipping and perspective
transformations; rendering of lines and filled polygons; lighting calculations; and Z-buffering, which
automatically performs hidden-surface removal.

Each type of graphical object has an associated C routine which renders the object. Each object in
the list is rendered by the appropriate routine, which extracts the calculated parameter values from the object
and uses the graphics library functions to add the object to the image. Use of the Z-buffer means that the
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objects do not have to be sorted (into, for example, back-to-front order) for rendering; object occlusions and
intersections are properly handled by the hardware.

6. Conclusions

This paper presented a new model for visualizing concurrent computations. The key features of the
model are its declarative nature, its rule-based notation, its ties to program verification, and the emphasis on
three-dimensional visualizations. The model was used as the basis for constructing an experimental
program visualization environment called Pavane. Our research and experimentation with Pavane brings
forth additional evidence that declarative visualization is a viable and attractive paradigm. In particular, this
paper shows that a strict declarative approach, based on mapping states to images, is able to handle
elegantly both history-dependent attributes and special effects essential to effective visual communication.
The decomposition of the visualization mapping is shown to be useful not only as a complexity control
tool but also as a means of capturing important aspects of the visualization methodology. For instance, in
this paper the decomposition favors a process which first abstracts the program state up to the point where a
three dimensional world of abstract objects is conceptualized; this world is gradually materialized in term of
a concrete visual representation; and, finally, visual events are explicated through the use of highlighting,
movement, etc. Additional guidelines are supplied by heuristics that substitute geometric, temporal and
other image properties for properties of the underlying computation. The approach described in this paper is
but the first step toward transforming the art of program visualization into a disciplined intellectual
exercise.
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